Phosphatidylcholine biosynthesis via the CDP-choline pathway in Saccharomyces cerevisiae. Multiple mechanisms of regulation.
نویسندگان
چکیده
Multiple mechanisms of regulation in the CDP-choline pathway for phosphatidylcholine (PC) synthesis were revealed by exploring the effects of choline and inositol on this pathway in Saccharomyces cerevisiae. At exogenous choline concentrations below 100 microM, phosphocholine cytidylyltransferase was rate-limiting; at higher choline concentrations the conversion of choline to phosphocholine by choline kinase became rate-limiting. Choline and inositol were found to regulate choline uptake; this established another regulatory mechanism by which PC synthesis is regulated in yeast. Inositol addition did not immediately affect labeled choline uptake or its incorporation into PC in actively dividing cells; however, preculturing the cells in the presence of choline decreased the rate of choline uptake, and this effect was amplified by the concomitant addition of inositol and choline. Additionally, a growth phase dependent effect of inositol supplementation was observed. Inositol addition to stationary phase cells resulted in an increase in choline uptake and subsequent PC production in these cells. This increase was shown to be due to an increase in the rate of choline transport into the cell. In the presence of inositol, choline transport is the main regulatory mechanism controlling flux through the CDP-choline pathway in S. cerevisiae. Inositol supplementation resulted in changes in the levels of enzyme activity detected in vitro. However, the effects observed in vivo correlated exclusively with changes in choline uptake. Choline transporter assays were consistent with these results. Since both the CPT1 and EPT1 gene products catalyze the cholinephosphotransferase reaction in vitro (Hjelmstad, R. H., and Bell, R. M. (1991) J. Biol. Chem. 266, 4357-4365), the effect of inositol on these two separate routes for PC biosynthesis was investigated. The data revealed that only cells harboring a functional CPT1 gene synthesized PC in vivo. These cells (ept1-delta 1::URA3) also displayed an identical mode of regulation in response to inositol as did cells containing an intact EPT1 gene (wild type) indicating there is no requirement for an alternate functional CDP-amino-alcohol pathway for inositol to regulate PC synthesis via the CDP-choline pathway.
منابع مشابه
Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast.
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322-330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficie...
متن کاملRegulation of phospholipid synthesis in the yeast cki1Delta eki1Delta mutant defective in the Kennedy pathway. The Cho1-encoded phosphatidylserine synthase is regulated by mRNA stability.
In the yeast Saccharomyces cerevisiae, the most abundant phospholipid phosphatidylcholine is synthesized by the complementary CDP-diacylglycerol and Kennedy pathways. Using a cki1Delta eki1Delta mutant defective in choline kinase and ethanolamine kinase, we examined the consequences of a block in the Kennedy pathway on the regulation of phosphatidylcholine synthesis by the CDP-diacylglycerol pa...
متن کاملThe Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity.
The Saccharomyces cerevisiae protein SEC14p is required for Golgi function and cell viability in vivo. This requirement is obviated by mutations that specifically inactivate the CDP-choline pathway for phosphatidylcholine biosynthesis. The biochemical basis for the in vivo relationship between SEC14p function and the CDP-choline pathway has remained obscure. We now report that SEC14p effects an...
متن کاملIsolation and characterization of the Saccharomyces cerevisiae EKI1 gene encoding ethanolamine kinase.
Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1. 82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The gene encoding ethanolamine kinase (EKI1) was identified from the Saccharomyces Genome Data Base (locus YDR147W) based on its homology to the Saccharomyces cerevisiae CKI1-encoded choline kinase, which also exhibits eth...
متن کامل1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway.
Treponema denticola synthesizes phosphatidylcholine through a licCA-dependent CDP-choline pathway identified only in the genus Treponema. However, the mechanism of conversion of CDP-choline to phosphatidylcholine remained unclear. We report here characterization of TDE0021 (herein designated cpt) encoding a 1,2-diacylglycerol choline phosphotransferase homologous to choline phosphotransferases ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 269 20 شماره
صفحات -
تاریخ انتشار 1994